The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.

نویسندگان

  • Xiaozun Li
  • Dong-Lei Yang
  • Li Sun
  • Qun Li
  • Bizeng Mao
  • Zuhua He
چکیده

Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.

Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on ...

متن کامل

Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum

Amide-linked conjugates of indole-3-acetic acid (IAA) have been identified in most plant species. They function in storage, inactivation or inhibition of the growth regulator auxin. We investigated how the major known endogenous amide-linked IAA conjugates with auxin-like activity act in auxin signaling and what role ILR1-like proteins play in this process in Arabidopsis. We used a genetically ...

متن کامل

The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice

Fe deficiency (-Fe) is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO) are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA) and NO levels in roots, and the responses of root growth in rice ...

متن کامل

Effect of native rhizobacteria of Iran on morphological traits, physiological traits, and expression of genes involved in auxin pathway of bread wheat cultivar Roshan

At present, the use of plant growth-promoting bacteria has been considered as a suitable alternative to the use of chemical fertilizers to improve wheat growth. The objectives of this study was to identify the best and most effective rhizobacteria on wheat growth. First, Bacillus strains were isolated from wheat rhizosphere and their ability to produce IAA was assayed. Then, Triticum aestivum (...

متن کامل

The Plant Cell reviews dynamic aspects of plant hormone signaling and crosstalk.

Plant hormones can exert strong, seemingly independent actions on plant growth and development. Auxin generally promotes growth; cytokinins delay leaf senescence and influence cell division; abscisic acid causes bud dormancy and promotes stomatal closure; gibberellins function in seed germination, and so on. Of course, in reality, these hormones exert many of their effects through a complex ser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 172 1  شماره 

صفحات  -

تاریخ انتشار 2016